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Hydrodynamics of an open vibrated granular system
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Using the hydrodynamic description and molecular dynamics simulations, the steady state of a fluidized
granular system in the presence of gravity is studied. For an open system, the density profile exhibits a
maximum, while the temperature profile goes through a minimum at high altitude, beyond that the temperature
increases with the height. The existence of the minimum is explained by the hydrodynamic equations if the
presence of a collisionless boundary layer is taken into account. The energy dissipated by interparticle colli-
sions is also computed. A good agreement is found between theory and simulation. The relationship with
previous works is discussed.
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[. INTRODUCTION ture increases for large enough heights. Unfortunately, the
authors do not comment on the origin and relevance of this
The aim of this paper is to investigate the hydrodynamicfinding. The same effect has been found again in experi-
description of a granular fluid in a gravitational field when ments and in molecular dynamics simulations by Hetedl.
energy is continuously provided to the system from below{10]. The temperature profile presents a minimum at a high
through a vibrating plate. Experiments, computer simula-altitude, beyond that it is found to increase. In order to ex-
tions, and also theoretical studies have revealed the existenptain this behavior, the authors suggest a model that involves
of a steady fluidized state under these conditidnsg]. One  two coupled differential equations for the packing fraction
of the main conclusions of all these studies is that vibroflu-and the temperature. These equations must be numerically
idized granular media show a fluidlike behavior, in the Sensgplved by using boundary conditions determined from the
that their state seems to be well characterized by the profile§imulations. Although there is a good qualitative agreement
of the hydrodynamic fields. Of course, a different question isjth the experimental and simulation results, the physical
whether hydrodynamic equations, derived as an extension ofiigin of the rise in temperature as well as its compatibility
those for ordinary fluids, provide a quantitatively, or at leastyjith 5 hydrodynamic description of the system is not clear.
qualitatively, _accurate description of what is observgd. In particular, the continuous approach used by Helal.
In a previous work[9], we have analyzed a vibrated Eoes not include a density dependent heat flux term, that

granular fluid in absence of external fields, paying special . .
attention to the bulk behavior of the fluid, far away from the !ays a.relevant role in grgnular'systehli,lz. A detqlled .
discussion of these questions will be one of the main points

boundaries. The system was shown to exhibit a normal be- ) . .
havior, independent of the details of the boundaries, charad® be addressv_ad |n_the _foIIc_meg ?ec“or?s: . - .
terized by a closed constitutive relationship between the uni- 1€ most direct implication of inelasticity in collisions is
form pressure and the temperature gradient. The idea here §3€ dissipation of energy in the system. The balance between
to extend the above study to systems submitted to a uniforri!® energy dissipated and the energy supplied through the
external field. Such an extension is not at all trivial, since the/ibrating wall is often used to derive scaling laws for vibrof-
field generates spatial gradients that couple in an intricat®lidized granular materials, as well as boundary conditions to
way to those associated with the inelasticity of the system.solve the hydrodynamic equations. Watral.[13] modeled
Most of the experimental studies deal with open systemsthe vibrated granular system under gravity as an isothermal
i.e., formally with a system of infinite height, and that is the fluid, with all the particles having the same velocity. Later
situation we will focus on here. It could be expected that theon, Kumaramn[14], using a kinetic theory description, found
behavior of the system becomes simple far away from theéhat the velocity distribution function is a Maxwell-
vibrating surface at the bottom. Nevertheless, the presence 8obltzmann distribution in the limit of small inelasticity. His
a free surface introduces some additional complications imxpression for the dissipated powronly differs from the
the description of the fluid. As the density decreases, paresult derived by Waret al. [13] by a constant. Extensive
ticles tend to move in a ballistic way restrained by the gravi-molecular dynamics simulations carried out by McNamara
tational force. This was already noted by HEH, who con-  and Luding[5] showed that the prediction in R¢fl4] fitted
cluded that a hydrodynamiclike description cannot accounbetter the simulation data than the expression in Rig],
for those effects. although significant discrepancies were found. In particular,
In 1991, Clement and Rajchenbal@] carried out an in- the simulation values ob indicated a dependence on the
teresting experimental study of a fluidized two-dimensionalnumber of particles in the system that was not accounted for
vertical granular system. They measured the hydrodynamiby the theory. Trying to understand this dependence is one of
profiles and established a series of important observationshe goals of the present work.
The point we want to emphasize is presented in Fig. 4 of This paper is organized as follows. In Sec. Il, the Navier-
their paper, where it is observed that the granular temperatokes-like hydrodynamic equations for a granular gas are
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shortly reviewed and particularized for the steady state of a T+u-VT+2(dnkg) 1pV- u—2(dnkB)‘1Viuj
vibrated system under the influence of an homogeneous ex-
ternal force. By introducing an appropriate scaling for the
space coordinate in the direction of the field, explicit expres-
sions for the hydrodynamic profiles are obtained. They in- . )
volve two constants that must be determined from the bound- —2(dnkg) V- («kVT+uVn)+T7=0. )

ary conditions. The limit of an infinitely high open system is ) _ i
considered in Sec. Ill. This limit does not imply that any of N the above equationp,=nkgT is the pressurekg the Bolt-

the two constants appearing in the general expression of tHdnann constanty the shear viscosity coefficien, the heat
temperature profile must vanish, contrary to what has beefonductivity coefficient, angw a new transport coefficient
established in some previous works. This is due to the predhat has no analogous in the elastic limit. Althoulgh is
ence of a free-molecule boundary layer in the upper region oieken as unity in most _of the I_|terature of fluidized granulqr
the granular gas, so that the validity of the hydrodynamicSyStems, we will keep it here just to stress the analogy with
equations cannot be extrapolated up to an infinite height, fofrolecular fluids. Flnallyg( ) is the cooling rate associated to
which a divergent behavior of one of the contributions to thethe energy dissipation in collisions. These quantities have the

theoretical prediction for the temperature profile would show{orm
up

2

X Vin+VJ‘Ui_d

n

5”VU)

A relevant consequence of the above is that the temperaZ — 7 (@) 7o(T),  k=r*(@)ko(T), M=M*(Q)M0(T)4

ture profile exhibits a minimum, becoming an increasing (4)

function for large enough heights. Moreover, by using mo-

lecular dynamics simulations, we have verified that the re- 5(0):?(&)3, (5)

gion of increasing temperature is accurately described by the UJ

hydrodynamic equations. In fact, the values of the minimum )

of the temperature and its position provide enough informaWhere 7o and «, are the Boltzmann elastic values of the

tion to build up the hydrodynamic profiles in the bulk of the shear viscosity and heat conductivity, respectivelys

system, as discussed in the last part of Sec. Ill. The form of Tko/n, and«™, »*, u*, and{* are dimensionless func-

the profiles for large heights, but still in the hydrodynamictions of the coefficient of normal restitutiom. For a—1,

regime, is analyzed in Sec. IV. n»* and k* tend to unity, whileu* and {* vanish. The
Section V is devoted to the study of the dissipation inexplicit expressions of these quantities are given in Appen-

collisions, again by means of the hydrodynamic descriptiondix A. Let us note that the existence of a transport coefficient

The results are compared with previous works as well agt giving a contribution of the density gradients to the heat

with molecular dynamics simulations. The origin of the dis-flux is a peculiarity of granular fluids that has been con-

crepancies between the several theories is clarified, showin§fmed by molecular dynamicgll] and by Monte Carlo

for instance, that the expression Mrderived by Kumaran Simulations of the Boltzmann equatigh2].

[14] corresponds to the low inelasticity and small system We will consider a force of the gravitational type, namely,

limits of the more general form derived here. Finally, the R

main conclusions are summarized in Sec. VI. f=-—mge,, (6)

with g a positive constant ane, the unit vector in the posi-

Il. HYDRODYNAMIC EQUATIONS tive direction of thez axis. The system we will study is a
ranular medium oN particles contained in a box of section
and heightL. The quantityS is an area fod=3 and a

. . : length ford=2. Energy is added to the system by the bottom

o, in presence of a uniform external foréeThe particles of the box which vibrates in a given way. Since many of the

fr?;“ge dvrvc')tg i;&?g?gst;?eggﬁ'ei?ﬁSoggglrjrr?]ael dretﬁgiut?wznsl?ate 0r sults we will derive in the following are independent of the
y y ption, pecific way in which the wall is vibrated, we delay the

the system Is characterized by the local number denSIt}fiiscussion of the details of its motion until they are needed.
n(r.0). _velomty flow u_(r,t), and _temperaturé’_(r,t) [115] Moreover, we are not interested in the boundary effects as-
For a dllut_e gas, the time evolution of these fields Is given bysociated to the side walls and, therefore, we will consider a
the equation$16,17 region of the system far away from them. In fact, in the

molecular dynamics simulations to be reported later on, pe-
riodic boundary conditions were used in the directions per-

We consider a granular gas composed by smooth inelast
hard spheresd= 3) or disks l=2) of massn and diameter

dn+V-(nu)=0, @ pendicular to the external field. Then, because of symmetry
considerations, in the steady state only gradients inzthe
atui+u-Vui+(mn)‘1Vip—(nm)‘1Vj ggggtlt%n are expected and the hydrodynamic equations re-
)
2 1 ap
X|n Viuj+Vjui_a(SijV'u —m fi:O, E=—nmg, (7)
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2 a(aT an

R — | =770 =
dnkg 0z Kaz+/”L&z) Tem=0. ®

Equation(7) implies

Ton  mg JT 9
Nz kg oz ®
and use of this expression into E§) together with Eqs(4)
and(5), leads to,

2 J aT
dnkB[K*(a)_’“*(a)]E wo(T) —
2amg - dko(T) nkeT?
dnsz# (@)————¢ (a)—n0 =0.

(10
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_ 3d-1at () 18
N 244 2) T (122 K (a)— i ()
b(a)= 2k* () —pu*(a) 19

20kt (@) - p* ()]

Inspection of Eq.16) indicates thatya(«) determines the
coupling between gradients and dissipation that is intrinsic in
granular flows, whilédb(«) is a scaling factor of the inhomo-
geneities associated to the external field.

It is still possible to express E@16) in a more familiar
way by defining a new variablé by

é=\a(a)(l+pf)=Co’ a(a)

L
f dz'n(z'")+ Pu
z mg
(20)

In order to analyze the above equation, it is convenient torpjs variable, as well a§ is a decreasing function of the

introduce a dimensionless length schley

L 1
IZJ dz ,
z NZ')

11

where \(z) is the local mean free path for hard disks or

spheres,
Az)=[Cno? 1], (12

with C=2./2 for d=2 andC= =2 for d=3. The variable

original coordinatez. Note that¢ cannot be defined in the
elastic limita—1, in whicha(«) vanishes. Performing the
change, Eq(16) becomes

| measures the number of mean free paths from the wall

located atz=L to the parallel plane located at heightFor
z=01itis

l(z=0)=l,=Co% IN,, (13

9?TY2 aTY?
£ pre +b(a) e — £T2=0, (2
whose general solution is
TYAE=AE" (6 +BE K, (€), (22)
where
v(a)= p (@) >0, (23

Akt (@) - p* ()]

N,=N/S being the number of particles in the system per unit

of section. In terms of, the solution of Eq(7) can be written
as

mgl

D=F+p|_-

(14

I, andK, are the modified Bessel functions of first and sec-
ond kind, respectively, and andB are constants that must
be determined from the boundary conditions. Since the be-
havior of the functions/a(a) andv(«) will play an impor-
tant role in the discussions in the following sections, we have
plotted them in Fig. 1 fod=2. Although both quantities

wherep, is the pressure of the gas next to the upper wall. Invanish in the elastic limity/a(a) grows much faster than

particular, az=0,

P(z=0)=po=mgN,+p_. (15
Equation(10) is equivalent to
0—,2Tl/2 b aTl/Z
(@) T (a)T=0, (16)
A% +pr Al
with
Co.d—l
* __
PL="mg Pt 17
and

v(a) as « decreases in the vicinity ak=1. On the other
hand, whena becomes smaller, the behavior inverts and
v(a) presents a much larger slope.

The pressure profile in thé scale follows directly from
Eq. (14) and (20),

(f):m—gg
P Co¥ Ya(a) .

In this way, we have formally solved the hydrodynamic
equations for the system under consideration. The expression
for the density follows from Eq¥22),(24), and the equation

of state. Afterwards, the relationship betwegeand the origi-

nal coordinatez is obtained by solving the equation

(29)
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1.0 - : : : indicating a divergent behavior of the temperature as the
limit £&—0 (z—) is approached. Nevertheless, it cannot be
concluded from here that the constaBitmust identically
vanish, contrary to what has been inferred in other works
[1,4]. There are two main reasons for that. First, the fact that
T formally diverges does not imply anything unphysical, as
long as the density decreases fast enough as to guarantee that
the local kinetic energy goes to zero agoes to infinity.
Second, Eq(22) is based on a continuous hydrodynamic
description of the granular flow, and such a description is not
valid in the region in whicl€ is very small, so that the local
Knudsen number, defined as the ratio of the mean free path
to the length scale of the macroscopic gradients, is very
large. There, the arguments leading from a microscopic de-
scription to a continuous approach fail, and the gas has to be
described as a free-molecule flow, with a so-called transition
regime between the hydrodynamic region and the collision-
FIG. 1. Functionsya(«a) (solid line and »(a) (dashed ling  less ong[19,2(. The detailed analysis of the gas in these

08 |

0.6 |

04

02

0.0 : - . '
0.5 0.6 0.7 0.8 0.9 1.0

defined in the main text, foi=2. regimes is an interesting but very complex problem that will
be addressed elsewhere. So, we will keep the conBtamt
dé g1 Eq. (22) different from zero, although the question is still
ne va(a)Co® dz, (25  whether its contribution is relevant within the hydrodynamic
region.

The presence of the term proportional kKg,(¢) in the
e€xpression ofr2 implies that the temperature profile exhib-
its @ minimum. Using the expressions of the derivatives of
the modified Bessel functionsl8], it is obtained that the
minimum is located at a valug= &7 given by the solution of
the equation

that is the differential form of the definition @fgiven in Eq.
(20). Of course, the solution of this equation involves th
pressure of the gas next to the upper wall, which is un-
known up to now.

Ill. OPEN SYSTEMS

In order to particularize the general results obtained in the Al,+1(61)—BK,+1(&1)=0, (30)
previous section for a given physical situation, i.e., for spe- o ]
cific forms of the walls az=0 andz=L, the crucial and and the temperaturé, at the minimum is
nontrivial point is the introduction of the hydrodynamic v s
boundary conditions needed to determine the consfaats Tm =& "TAL(E) +BK (7] (39
B appearing in Eq(22), as well as the value qf, entering in
the definition of¢, Eq. (20). We are interested in an open Therefore, if the hydrodynamic description is valid in the
system, i.e., in the limit of infinite height. In this limit, itis  Vicinity of {= ¢y, the values ofr and T, allow us to de-
obvious thatp, =0, so that the lowest value @fis now ¢  termine the constantd and B characterizing the hydrody-
=0, corresponding to the limiz—o. More explicitly, Eq. hamic profiles everywhere in the system, except in the
(20) becomes boundary layers next t§= ¢, and £=0, where a more mi-
croscopic description, such as that provided by kinetic
o theory, is needed.
fzcad_lVa(a)f dz'n(z"). (26) As an example, in Fig. 2 we plot the temperature profile
‘ in the ¢ variable obtained by molecular dynamics simulation

The behavior of the modified Bessel functions in the limit!n @ two-dimensional system with=0.95 andN,=6. The

£—0 is[18] wall at the bottom is vibrated with a sawtooth velocity pro-
file having a velocity,= 6. This means that all the particles
1 £\ colliding with the wall find it with that velocity5,21]. More-
(&)~ m E) , (27) over, the amplitude of the wall motion is much smaller than

the mean free path of the particles next to it, so that the
_, position of the wall can be taken as fixedzat 0. Periodic
K, (&)~ I'(v) (E) _ (28) boundary conditions are employed in the direction perpen-
. 2 \2 dicular to the field. The units are defined by=1, ando
=1. We takekg=0.5, and the value of the external field is
Therefore, it follows from Eq(22) that in the same limit, g=1. For the above value of, it is »=0.021. From the
5 simulation data it is estimated th&t=0.21 andT,,=162.6,
BF(V)(§_ and using Eqgs.(30) and (31) one getsA=12.2 andB
2 2 =0.76. The dashed line in the figure is the temperature pro-

-V

TVA¢)~ : (29
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FIG. 2. Temperature profile in units defined in the main text, in  F!G- 4. Comparison of the exact theoretical expression for the
the ¢ variable of a vibrated system wita=0.95, N,=6 (& temperature profileEg. (22)] and the approxma_ted express_[dﬁq_.
=1.722) anv,,— 6. The solid line is from the molecular dynamics (34)] for values of the parameters corresponding to the situation of
simulation, while the dashed line is the theoretical prediction dis-F19- 2.
cussed in the text.

boundary layer and the transition regime, the location of the
file obtained with these values of the constants. A quite goodemperature minimum and, consequently, of the hydrody-
agreement is observed between the constructed profile ari@mic region beyond it, are expected to correspond to small
the simulation data outside the boundary layers. In particulanalues ofé. Therefore, to study this region we can approxi-
the agreement extends well inside the region of small valuegate in Eq.(22) the modified Bessel functions by their ex-
of & This confirms that the hydrodynamic regime includespressions in the limit of small arguments. This yields
the minimum of the temperature and also a part of the system
\c/jvgsrreeatshei.temperature increases wathe., T increases a§ ngl_gv(v_}_ D (v+ 1)25;2(1+ v) (32)

In Fig. 3 the same temperature profile as in Fig. 2 is
shown as a function of the original varialdelt is seen that and, since¢; is small, it follows thatA/B>1. The conclu-

the increase of the temperature with the height is not just &jon, reached in this way is that the term involviKg(&) in
theoretical artifact, but in practice it is observed over a W|deEq_ (22) is only relevant in the region in whichis small and
region in real space. Slmllar results have been obt_auned fqgv(g) is large. More precisely, a detailed asymptotic analy-
other values ofx in the interval 0.85a=<0.99. Details of g5 of Eq.(22) indicates that the relevant increasing tempera-
the practical limitations in the molecular dynamics simula-¢ e region corresponds <1 but £&2=12. This range of
tions will be given in the last section of the paper. values of¢ exists as long as’ is small enough, i.e., the

. Since the existence of a region where the temperaturgy siem pe not too inelastic. Moreover, the analysis shows
increases is associated with the presence of the collisionle$g,s i this¢ window one can approximate

500 : ‘ .
‘\ K, (§)~—Iné (33
\
\
400 ! When¢ takes values of the order of unity, the teB¥™ ”In &
0 is negligible as compared witA¢™ "1 ,(£). Then, we pro-
pose, as an accurate approximation to &), the expres-
sion
T 300 |
TYAE)=AE",(§)—BE "Iné. (34)
200 | In Fig. 4 we compare Eq$22) and(34) for A=12.2 and
B=0.26, which are the values of the constants found from
the molecular dynamics data corresponding to the situation

100 s ‘ ; described in Fig. 2. The agreement is fairly good in the plot-
0 200 420 600 800 ted interval 102<¢<2. The accuracy is even better for
larger values of, as expected from the above discussion.

FIG. 3. The same as Fig. 2, but in terms of the real space Let us next analyze the density profile. Equatic24 and
variablez, measured in units of. (34) yield
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FIG. 6. Theoretical value of the scaled position of the density
maximum as a function of the coefficient of restitutien,
0.04
temperature minimungy, &, takes values of the order of
n b unity. Moreover, the dependence &f on « is rather weak
0.03 | ®) since it grows roughly from 1.07 to 1.46 asdecreases from
0.99 to 0.5. Nevertheless, when the valuestpfare trans-
lated into thel scale by means of Eq20) with p;’ =0, the
position of the maximum of the density turns out to be
0.02 | strongly influenced by the inelasticity of the system, increas-
ing very fast asx approaches unity.
One of the main implications of E436) is that the posi-
0.01 | tion of the density maximum, measured in the scgléoes
not depend on the boundary conditions, i.e., on the values of
the constanté\ andB, or on the total number of particles in
0.00 , - the system, as measured for instanceNyy Of course, in
o 200 400 600 800 order to actually observe the maximum in an experiment or
z in a computer simulation, it must be

FIG. 5. Density profile in the scaledl variable(a), and in the T d—1
real variable(b), for the same values of the parameters as in Fig. 2. én<éo=va(a)lp=Cva(a)o™ "N,. (37)
The solid line is from the molecular dynamics simulation, while the

dashed line is the theoretical prediction discussed in the text. Taking into account Eq(11), the total number of particles

N$™) per unit of length or area of the vibrating wall above
the position of the density maximum is

n(g): p(g) _ mg§l+21/
KeT(€)  Ckgo® *Va(a)[Al,(£)—Bln£]? (+)___In
(35 N= 5 38

The comparison of this expression with the simulation data

for the same system as in Fig. 2 is shown in Fig. 5. Thewherel, denotes the position of the density maximum in the
dashed line, corresponding to the theoretical prediction, hakscale. This number increasesa@sncreases. Therefore, the
been plotted by using the values &fand B obtained by more elastic the system is the larger is the number of par-
fitting the temperature minimum. Again, the agreement idicles needed in order to see the maximum of the density.
quite good, outside the boundary layer next to the vibratingrhis explains why in some molecular dynamics simulations

wall. the density profile shows an almost monotonic decay with an
The density profile exhibits a maximum &t ¢,,, thatis ~ apparent maximum next to the vibrating wall. On the other
approximately given by the solution of the equation hand, the position of the density maximum in the actual vari-
able z does depend on the boundary conditions, since the

1, (&) —2&00,41(&0)=0, (36) conversion fromé to z involves the constantd andB, as it

follows from Egs.(26) and (35). This is clearly seen, for
which can be numerically solved for each valuevoi.e., of  instance, in the experimental results shown in Figp) Df
a. A sketch of the derivation of E436) is given in Appen-  Ref.[13]. The prediction of our theory is that the area bellow
dix B. In Fig. 6, &, is shown as a function ok for 0.5<a  the density profile to the right of the maximum is the same
=<0.99. Let us remark that contrary to the position of thefor the several vibration amplitudes. This seems to be quali-
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tatively true in the reported case, although the vibration am- Also for v<1, Eq.(40) leads to
plitude can affect the degree of fluidization of the granular
system, so that for small amplitudes the theory developed dinn mg

here may not apply. 4 kT (44)
B

IV. THE UPPER REGION OF THE GRANULAR GAS Therefore, if the temperature is approximately constant in the
For largez (small &), but still inside the region where Zinterval considered, an apparently exponential behavior of
hydrodynamics holds, the temperature and density profile§1€ density can be observed. This is equivalent to saying that
can be approximated by n(¢&)« ¢, as easily seen from E0). Again, the simulations
have confirmed these predictions.
1" 1 It is important to stress that the region in which the tem-
T1’2(§)~A(—) B¢ "In¢, (399  perature shows a minimum followed by an apparently linear
2) T(1+v) profile, and the density seems to decay exponentially, can
only be explained correctly if the contribution of the term
mgé B& 'K, (&) to the temperature profile in E@22) is taken
A1 I ot ro—» 1 . X into account. Moreover, the above discussion only explains
Ckgor a(a)[A27"T(1+v) " =B& Ing] (40) an approximately exponential decay of the density for values
of z lying well inside the region of increasing temperature,

respectively. Note that the own structure of Eg9), that but not vyhere the temperature decreases with the hglght, due
o P . . __to the different variation rates of the temperature in both
does not present any minimum, implies that this approxima-

tion only holds for values of smaller than the positio&; of regions.

the temperature minimum. On the other hagdshould be

large enough as to the hydrodynamic description be accurate. V. DISSIPATED POWER
In the previous section we have discussed the existence of a
relevant region verifying both conditions. Substitution of
these expressions into E@5) yields

n(¢)~

An expression for the total powér dissipated in the sys-
tem is directly obtained from the hydrodynamic equation for
the temperature, Eq3),

mgédz
dé~— - 2z (4] _J dnkg (0)
1 - } D= | dr T¢
Kg A(E I'(1+v) '=B& "In¢ 2
. o B dkgS{* (a) TH2 J’fodg (OT(6)" 45)
and by differentiation of Eq(39) one gets ZCO'd_lMﬂO 0 p .

1pdT 2mgB » ) )
T FE k—Bg (1-vIné§). (42 Upon writing the above expression we have taken into ac-

count thaty, is proportional toT*2. Using now the expres-

. . sions for the pressure and temperature profiles, ¢5.and
For v<1, that means not very inelastic systems, the abovg24) respectively, one gets

equation can be approximated by

dT3/2 3mgB D= dkBSm@*(a)Tllz §Od 1= A +LBK

(46)
This is compatible with what is seen in the molecular dy- _ _ . _ .
namics simulations, although due to the relatively smaliThe integral on the right hand side of this expression can be

variation of the temperature within the region with positive ~ easily evaluated by employing Eq®2) with the result
slope, the behavior predicted by E@3) is hard to discern

from a simple linear ire profile. We have fitted the tempera- dkgSZ* (a)mgTY2 2l-v
ture profiles obtained by molecular dynamics simulations for D= 1 5 [A[ &7, 1(Eg)———
largez to the behavior predicted by EGt3). The values o8 2[Co™ Va(a)]no I'(v)
obtained in this way were compared with those determined

from the minimum of the temperature, as discussed in Sec. —B[gé’”Kl_V(go)—Z*”F(l— ,,)]]' (47)
[ll, and a good agreement was found. Since the con&ast

small, a good estimation of the temperature profile in this

upper region of the vibrated granular system is obtained imhis expression is an exact consequence of the hydrody-
some cases by considering that the temperature reachesnamic equations for a granular gas. In particular, no assump-
constant platea[d3,14,23. tion has been made about the valueggf A, or B.
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Let us define a dimensionless quantityby

e D
g(NmE£)¥?’

whereE is the total kinetic energy of the system,

- 9 B Sdig £o e
- [ ar SrkeT= —and_lmfo d¢ £ AL(D)

+BK,(&)]2 (49

(48)

Substitution of Eqs(47) and (49) into Eqg. (48) leads to an
explicit expression fofF. It is a rather complicated and not
very illuminating expression. Therefore, we will not write it
here explicitly, although it will be referred to in the follow- %

iNg asF exacr. Lt us now suppose that we neglect the part of FIG. 7. Dimensionless quantitf defined in the text fora
the profile_s that are responsible for the increase of .the tem- 5 95 as a function of the parametgy. The continuous line is the
p.erat.ure, I.e., we Torma”y takg=0. Becaysg of the discus- approximated expression derived in the tgxg. (50)], the dashed
sion in Sec. I, this could be expectedpriori to be a good |jine the prediction by KumarafEg. (53)], and the horizontal dotted
approximation as long ag, is not small. Then, using the jine, the asymptotic value fog,—. The symbols are from mo-
eng_Cit dexpression of the elastic shear viscosify, it is  |ecular dynamics simulations, as discussed in the main text.
obtaine

ol-v In Fig. 7 we have plotted the functida(£) in the interval
B 1 (Ee)— m— 0=<¢£p=<10 for=0.95 (v=0.021). The solid line i& 5 pprox
_ 4(2d)2r V2 (@) %0 1 T () as given by Eq(50), while the dashed line is the expression
APPIOXT (44 2) I (d/2)Cvala) &, §od 2 g2 172 derived by Kumaran, Eq(53). The dotted line shows the
0 £¢ (&) asymptotic constant value predicted by Ef1), F=0.85.

(50) Similar behaviors are obtained for other valuesaofThe
symbols are molecular dynamics simulation results. While
Although this expression is not at all simple, it only dependsthe circles are from simulations carried out by us, the squares
on the values ofx and &;, but not on the boundary condi- are from Fig. 2 in Ref[5] by taking into account that the
tions that determine the consta#t®ndB, then representing quantity C,, defined there is related by
a scaling law prediction. In the limit of a large system, in the

sense thaty>1, the asymptotic behavior of Eq51) is 1 Cya(a) 12
given by Cpp=(1=a) | —{ (54)
z

8dl/27T(d71)/2§* (a) ) . .

, (51)  Equation(53) predictsC,,= 2. All the reported simula-
(d+2)CI'(d/2)Va(e) tion data in the figure correspond to the dilute fluidized re-
gime, i.e., for high enough velocities of the vibrating wall, so
that F has already reached a steady value that does not de-
2(2d) V2@~ D12 (o) » pend any more om,,. For smaller values of the velocitf,

12, (52) is an increasing functlon of [5]. The valge oféq hz_is been
(d+2)I'(d/2)Ca(a) varied by modifying the number of particlés,. It is seen
that Eq.(50) reproduces fairly well the simulation results,
Kumaran[5,14] modeled the vibrated granular media as providing a definitely better approximation than E§3). In
an isothermal fluid with a Maxwellian velocity distribution fact, the dependence d,, on the size of the system, mea-
and derived an expression for the dissipated po¥én a  syred byN,, was already realized by McNamara and Luding
two-dimensional system. His expression leads to a value qf5]. Let us also stress that the asymptotic behavior for large

I:approx"'

while for small &, it is

approx

the quantityF given by systems, Eq(51), is only accurate for quite large values of
12 &, and, therefore, it is not very useful in practice.
F=(1-a) moN, (53) We have also computele,,c: by using the values oA
Zm andB resulting from the fitting of the minimum of the tem-

perature profile obtained in the simulations, as discussed in
In the limit of quasielasticity, i.e., forr very close to unity, Sec. Ill. The resultsnot shown always lie between the
this result is equivalent to E¢52). Consequently, as derived simulation symbols and the cur¥€,,p.ox. The discrepan-
here, its applicability is restricted to small inelasticity andcies betweerF,,,0x and the simulation results increase as
small systems. the value of the coefficient of normal restitutiandecreases.
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The reason is that the energy dissipated in the region with associated with the transition to the free-particle flow. Nev-
positive temperature slope, which is neglected in &), ertheless, we have observed in the simulations that the hy-
becomes more relevant as the inelasticity of the system indrodynamic fields seem to scale with the velocity of the vi-
creases. This is confirmed by the fact that a much bettebrating wall, as already found in Rd#]
agreement is found if the expressionFaf, .., with A andB The range of validity of the analysis we have carried out
obtained from the simulation, is used. On the other hand, it isleserves some comments. We have verified that there is a
still true that, for largev,,, F reaches a value that only de- reasonable good agreement between the theoretical predic-
pends or¢y and e, then indicating the existence of a scaling tions derived here and the molecular dynamics results for
law. This scaling is not trivially seen in the expression of «>0.9. For smaller values of the coefficient of restitution,
Fexactthat depends on both constahiindB in a nontrivial ~ the discrepancies become important and they increase very
manner. Nevertheless, it must be realized thand B are  rapidly asa decreases. There are two main related reasons
not in fact independent. They must be determined from thé¢hat restricta priori the applicability of our theory to the
same boundary conditions specifying the vibrating wall, al-small inelasticity range. For large inelasticity, the gradients
though their calculation actually requires considering the freddecome very large and the Navier-Stokes approximation
particle region. If there is a proportionality relationship be-fails. Moreover, the density in the vicinity of its maximum
tweenA andB, it is easily seen that the expressionrqf,,.; becomes very high so that the low density hydrodynamic
turns out to be independent of them. equations should be substituted by equations more accurate
for dense granular fluids.

VI. CONCLUSIONS
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equations is able to explain what is observed in molecular
dynamics simulations and also in experiments. We have fo- APPENDIX A
cused on open systems, and showed that the presence of a
collisionless regime in the very high region of the gas must In this Appendix, the explicit expressions for the quanti-
be taken into account when introducing the matching condities appearing in Eqsi4) and (5) are given[16,17. The
tions between the bulk of the granular medium and theéBoltzmann elastic values for the shear viscosity and thermal
boundaries. Now we summarize the most important resultsconductivity are

(@) The temperature profile as a function of the height
presents a minimum, increasing monotonically afterwards.
The minimum lies in the hydrodynamic region, but when 70="g L(d2)m= DA mkgT) Y2~ @71, (A1)
interpreting this result it must be realized that the hydrody-
namic description is not valid when the density becomes too

small. :d(d+2)2r(d/2) —(d-1)/2 kB_T v —(d-1)
(b) The density profile presents a maximum when the sys- Ko 16(d—1) 7 Bl m 7 '
tem has a large enough number of particles. This maximum (A2)

is not associated, in principle, to any clustering hydrody-

namic instability, but follows directly from the Navier- while the dimensionless functions have the form
Stokes equations.

(c) The position of the density maximum is quite accu- ()]t
rately only determined by the coefficient of restitution of the ¥ (a)=|vi(a)— , (A3)
system, being independent of the number of particles and the 2
way in which the system is being vibrated.

(d) An accurate description of the energy dissipated in 2d -1

[1+c*(a)], (A4)

collisions requires considering the nonuniformity of the hy- ()= v3 (@)= 5= " (a)
drodynamic fields. The results obtained by using the exact

hydrodynamic profiles derived from the Navier-Stokes equa-

tions are in better agreement with molecular dynamics simu- NN
lations than those using a uniform temperature and an expo- p*(a) =20 (@)
nentially decreasing density.

(e) The approximations used in some previous works have 2(d-1) | .
been obtained as limiting approximations of the more gen- X|—g  v2(@)=30(a)
eral results obtained here. This also applies to the scaling
behavior predicted by some authors. A sound justification of
scaling laws can only follow from a detailed analysis of both (@)= ﬂ(l— o?)
boundary layers, the one next to the vibrating wall and that 4d

K*(a)+

(d—l)c*(@]
2d7* (a)

-1
, (AY)

3
1+ —=c*(a)

2 . (AB)
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Here we have introduced

d é:1+2V
Py i— =0, (B1)
. . (3-3a+2d)(1+a) \ de1,(2]

vi(a)= d 1—6—4c ()|, (A7) £=¢,

that using[18]
« o ltajd-1 3(d+8)(1-a) q
9= g1 16 GElE UOI=E 1,100,
4+5d-3(4—d
G I ‘e ) (52
d_g[f "K(&)]=—§"K,11(8),
2
c*(a)= 3A1-a)(1-2a%) (A9) leads directly to Eq(36). Sincel ,(£)>0 andK ,(£)>0, this
9+ 24d+(8d—41) a+30a3(1—a) equation has a solution fagr>0. When the equation is nu-
merically solved, see Fig. 6, it turns out tigatis of the order
APPENDIX B of unity, consistently with our assumption above.

Let us point out that if the terrB In ¢ in Eq. (35) is kept
To determine the positiog, of the maximum of the den- in the calculations to determing,, a wrong result is ob-
sity profile, we suppose it is of the order of unity. Of course,tained. The reason is that its contribution to the derivative of
this is to be verified at posteriori. Then, the teBin éinthe  n(&) becomes very important in the vicinity of,,, and
denominator on the right hand of E5) can be neglected higher order contributions coming fromd,(£) have to be

in the calculation, and the equation determinggreads considered for a consistent calculation.
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